Genetic variation of Lygus lineolaris in eastern North America observed with mitochondrial and nuclear DNA

1Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India \& Oilseed Research Centre, Agriculture and Agri-Food Canada ,Ottawa, Ontario 3North Dakota State University, Department of Entomology, Fargo, ND 4USDA ARS, Red River Valley Agricultural Research Center, Insect Genetics \&
Lygus lineolaris is the pest Lygus species of note in North America from the Great Plains to the Atlantic Coast and from three regions have been used to explore its genetic diversity

cox1-cox2

Haplotype Network of cox1-cox2 768 bp haplotypes. Circle size
proportional to number of individuals in each hapiotype (actual
number in blue)

Maximum parsimony topology based on Lygus

Prasad Burange1, Robert Foottit2, Eric Maw2, Mark Boetel3, Sheila Sears4, and Richard Roehrdanz4

Biochemistry, Fargo, ND

Estimates of average evolut
divergence for coxi-coxz:
 (below diagonal): net evolutionary
beween groups (above cligonal).

Barcode

Both the "barcode" region and a longer cox1-cox2 separate L. lineolaris into two genetic clades

Major haplotypes of clades separated by 3 substitutions (barcode) and 6 substitutions (cox1cox2) - $\approx 0.5 \%$

Intermediate genotypes are rare
Distribution of clades has geographical component
**
Agriulture and Agricultire ot Canadä'
L. lineolaris Regional Distribution of Clade \& Clade 2 (combined mitochondrial data)

A nuclear fragment comprising 452 bases flanking a microsatelitit locus
(MSFR) separates into two common clades (Type $A, n=73$; Type $B, n=$ 420 and a third clace that is mare (Type $\mathrm{C}, \mathrm{n}=3$). The two common clade
differ by 10 substitutions. The third clade differs by 12 and 17 differ by 10 substitutions. The third clade differs by 12 and 17
substitutions from the other two and is represented by only three individuals. The mitochondrial and nuclear clades are not coincident. 72°
aithough 90% of Clade A MSFR have been mitochondrial Clade 2 and although 90% of Clade A MSFR have been mitochondrial Clade 2 and 72%
of $M S F R$ C Carde B have been mitochondrial Clade 1. There is nis apparent of MSFR Clade B have been mitochondrial Clade 1. There is no apparent
link between the mitochondrial or nuclear genotypes and the host plant
origins. * Clade 1 more common north and west * Clade 2 more common south and east

Mating barriers unknown

MSFR distribution also varies north to south. In Canada Type A was MSFR distrib
found only in SE Ontario in strip of about 80 km inmediately A was
Groat of th Great Lakes/St. Lawrence River. Type A is rare in the Red River Valley of
the North but common in the lower Mississippi River Valley. Type B is

